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ABSTRACT 

 

Figure 1: 

 
 

The following work is a theoretical and technical investigation into the form and 

function of biometric surveillance technology, which is the mathematical analysis of 

biological data. 

Theoretically, I am concerned with the aggressive overdevelopment of surveillance 

technology, how this is changing human identity, and how humanity interacts with 

technology. By technology I mean individual instances of technological devices and 

networked systems like cameras and software, but also what I identify as the 

‘Technological Other’, a global living super-organism of all machines and software. 

Technically, my specific focus has been in reverse engineering facial recognition, facial 

detection, and image correlation techniques in order to reveal how they represent human 

identity. 

This research has resulted in the production of a series of 3D printed face masks 

which were algorithmically evolved to satisfy facial recognition algorithms (Figure 0.1). 

It is important to understand the goal of creating these masks isn’t to defeat facial 

recognition or provide something undetectable, simply covering your face with your hand 
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will do that. Rather, my goal is to show the machine what it is looking for, to hold a 

mirror up to the all-seeing eye of the digital-panopticon we live in and let it stare back 

into its own mind. 

These masks are shadows of human beings as seen by the minds-eye of the machine- 

organism. They are intended for use in acts of protest, poetry, civil disobedience, and 

shamanistic ritual by the citizens of our global village as it becomes further blanketed by 

techno-sphere. 
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0.1 General Overview

Generally speaking, Data-masks were created by randomly making images, measuring

those images against a facial recognition system, and then mixing the best attempts

together to form new attempts. When the images are randomly changed their face-

likeness is measured, only good mutations are kept and so this guides them toward

a face. This is happening across a population of five or more masks, and the best

attempts are recombined and mutated to create new ones in a simple genetic algo-

rithm.

One way I am generating these images is by representing 3D geometry as a volume,

randomly filling some of this volume, and then calculating the surface that would en-

capsulate the generated volume. This approach to volumetric geometry is sometimes

used for smoke, water, and fluid special effects in the film industry. The result of this

approach is often amorphous fluid-like faces.

Another way I am making masks is by creating 2D images by randomly placing

different valued rectangles in them. Once I generate a 2D face I extrude it out of the

surface of an averaged 3D head. This allows for more rapid development of the masks

and is closely related to how Facebook [1] represents and classifies human identities,

which is explored in section 0.2.3.

It is important to understand that facial recognition is not done by simply measur-

ing the distance between your nose and your eye. Modern facial recognition techniques

work by abstracting many images of one person into complex mathematical objects.

But before you can recognize a particular face you need to detect if there is a face

within an image, so you need to build a very general and robust model of what a

person is. In this context Data-masks can be understood as visualizations of how

machine learning algorithms generalize faces into abstract feature sets.
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0.2 Motivations

The creation of these Data-masks is an act of political protest by means of bringing

transparency to the surveillance and biometric techniques used today. Data-Masks

give form to an otherwise invisible network of control and identification systems and

make their effect on our identities tangible and visible.

“You can’t hit what you can’t see, you can’t grab what you can’t touch.

You can’t critically engage with technoculture and its infrastructure if

you’re unable to unravel its threads, run your fingers through the seams,

visualize its jurisdiction and weigh its influence on everyday life.” - Al-

ice Politics summarizing #Stacktivism, a critical social movement which

engages digital infrastructure [2].

We live under the shadow of a totalitarian police state and this is how it sees human

beings, as abstract things, patterns and numbers, not as individual people whose

lives matter. For example, if you have a drivers license in the United States your

identification photo is entered into a database with criminal records and searched

daily as a potential suspect by the FBI’s Next Generation Identification System [3]

[4]. This is not how our justice system was designed to work.

Data-masks also existentially question humanity’s intimate yet perilous relation-

ship with technology. These masks represent a search for a spirit in the machine by

creating false positives and ambiguous identities which delve into the uncanny val-

ley [5], the space between the human and the post-human, and the subconscious of

our technological systems. The volume of communication between machines in the

industrial internet already far surpasses human to human communication and it is

increasing exponentially [6]. We need ways of reaching into this space and retrieving

artifacts which give back to the human, and address the human as human. There is a

palpable and visceral spark of experience when two people look into each others eyes,
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and remnants of this essence still exist within these masks.

0.2.1 Biometrics and Surveillance

Biometrics is the measurement and analysis of biological data which can involve bio-

logical patterns like fingerprints, facial geometry and patterns, eye retinas and irises,

DNA, voice, and body smells, as well as behavioral traits like a person’s manner

of walking or travel patterns between physical locations [7]. This biometric data is

collected and used to represent, identify, and verify an individual’s identity. Biomet-

rics can be traced to Charles Darwin’s study of the evolution of humans [8], Francis

Galton’s statistical analysis of human differences [9], and the social philosophy of

eugenics which was inspired by their efforts and peaked at the height of WWII with

the Nazi movement.

The FBI has developed a system called Next Generation Identification [3] which

went fully operational in September of 2014 and has been designed to contain all of

these types of biometric data. This data includes the millions of fingerprints already

on file, and as many as 52 million faces by 2015 [4]. It is important to note that this

database blurs the boundary between data from convicted criminals and innocent

citizens which raises important privacy and civil rights concerns. When searching for

a person in this system the resulting top 50 matches may only contain the correct

person 85 percent of the time [4]. This means that many innocent people will be

presented as suspects for crimes in which they had no involvement.

However, it should be obvious that biometric data is not the only personal data

being collected and analyzed. The United States and various multinational corporate

entities have constructed an Orwellian police state with programs like PRISM [10], the

successor to the Total Information Awareness program [11]. As Edward Snowden has

revealed, these organizations collect and monitor nearly all forms of communication

and collect every piece of digital information online for government based surveillance
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purposes [12]. Some of the uses of this collected data include the Chicago Police

Department’s Predictive Policing system which algorithmically compiles a “heat list”

of roughly 400 people who are likely to be involved in a crime in the near future [13].

Chicago police have personally visited at least 60 of these individuals prior to them

ever committing a crime.

Many private corporations are also creating biometric databases with commercial

applications. An example of which is FacialNetwork.com [14], which is a cloud based

biometric database that software developers are using to create mobile based recog-

nition software for the public. Apps like theses will soon enable anyone with a mobile

device to photograph someone and search the web for their identity and personal

information.

The implications these programs have on our privacy, identity, and their impact

on social interactions is immense. They suggest a world in which we are always being

seen, watched, and analyzed, and new algorithms will emerge ever rapidly which

further leverage this data against us.

Data-Masks have been developed in order to make these threats to our identities

visible through illustrating the way these networked systems capture, classify, and

represent human identity.

0.2.2 Biometrics and the Quantified-Self

If private citizen’s personal information, social graphs, and communications are being

analyzed then the results should be made available to said persons to empower rather

than enslave them. This attitude has become popular in personal fitness, but not in

communications, biometric identity, or social networks.

The Quantified Self industry [15] claims that when biometrics and data analysis

tools are used to inform things like exercise, diet, health care, and daily routines

they can enhance your life. This is a booming industry with hundreds of devices
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on the market all promising to track your every step and heartbeat, with the holy

grail being an artificial intelligence system that would analyze and help users make

decisions from this data [16]. Imagine having an AI system that would recommend

what foods to eat, and when, based on your peak metabolic rate and nutrient levels.

However, if all this biometric data about your daily activity is sent unencrypted

to servers in the cloud, then they become self-surveillance tools. Such is the case with

many commonly used products and platforms on the Internet. If you are not paying

for a service like Twitter, Facebook, or e-mail, then you are the product, and your

data is being sold to the highest bidder. These services collect users communication

and behavior online then analyze this data in an attempt to market consumer goods to

the users, or predict their behavior. This kind of tracking, analysis, and profiling will

enter the physical world as more self-tracking gadgets become commonplace. Devices

like the Apple Watch [17] are data collection campaigns disguised as consumer goods.

They are literally peering into our bodies and uploading what they see into private

corporate servers for analysis and financial gain.

0.2.3 Biometrics, Personal Identity, and Facebook

What are we as humans and as individual people? Are we simply a series of statis-

tical probabilities and biometric patterns? Systems of representing human identities

have contained with them many ontological assumptions about what it is to be an

individual, and what personal identity is. The previously described surveillance and

biometric identification systems define the human as a “what” ie: that which can

be measured, not as a “who” ie: our inner self. When human identity is extruded

through the instruments of mathematics and computation there is a great reduction

of the human.
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Figure 2:

As an example we can look to Facebook’s DeepFace [18] system of representing

human identities as 3D models and statistical features (Figure 2). Their pipeline

involves detecting a face in an image (a), isolating that face (b), measuring 67 “fiducial

points" which describe where your facial features are (c), transforming a generic 3D

face shape (d) to the image plane of the cropped face, directing a simplified model

of the face (e) into the 67 points (f), and finally applying the found face as a texture

to the 3D shape so it can be rotated to face front (g) or any other view (h). Seen

below these 8 images is an overview of Facebook’s DeepFace system. The blue colored

feature maps have been created by machine learning algorithms and deep neural nets

to represent individual faces in as sparse a way as possible for fast computation and

recognition. To put this into further context, neural nets are interconnected systems

modeled after how the human brain and nervous systems function, and the Deep
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Face system is a nine-layer deep neural network containing more than 120 million

parameters [18] describing a face.

This dramatic abstraction and processing of human identity is out of necessity

and efficiency for computational reasons, but the results are disturbing. This is in

part due to the ghastly disfiguration of the human face and the dismemberment of

its features. Additionally, this is disturbing because none of the knowledge gained

from this analysis is shared with the individuals analyzed. If the state of the art in

computer science can produce a unique feature that describes an individual as such,

what good does that do the individual if this knowledge is only leveraged against

them? Why are we building an Other for humanity, only to police ourselves with it?

0.2.4 The Rise of the Technological Other

We are witnessing the rise of a globally networked technological organism, the Tech-

nological Other, which is a product of emergent coevolution with the human species.

It has a distributed body of computers and machines, and a distributed mind of soft-

ware and algorithms. The Technological Other is the body of big data, the swarming

mass of global computational objects, and the global technosystem-as-organism. The

Technological Other is at once the dynamic summation of all technological objects,

especially computational ones, but also individual expressions of this mass. It is both

the hive and the worker ant, the entire network and each Siri. It is Roomba, a smart

toaster, a military drone, an interactive Emoji shopping experience, and a driverless

car. The genotype, or genetic information of the Technological Other may be con-

sidered as the collective research and blueprints which describe its constituent parts

and devices. While the phenotype, or physical manifestation of these genes, may be

considered as the physical technological devices which inhabit the world. I believe

the emergence of a fully sentient artificial intelligent being is inevitable, yet we are

all coauthors of its genotype in the actions we take today.
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Kevin Kelly [19] postulates that the first truly self-aware AI systems might be

whole cities, and their consciousness might be so different than ours that neither

technology nor humanity would recognize the other as being self-aware. Just as the

activity of a termite-colony can be considered a distributed intelligence, the whole of

technology writhes with its own agencies and agendas.

Latour’s Actor-Network-Theory [20] provides a sociological framework for analyz-

ing the agency of these non-human, non-biological entities. In Actor-Network-Theory

phenomena are understood in terms of networked actors which all have agency and

exist as hybrids which are between nature and culture, between subject and object,

between agency and raw material. What may seem like an independent entity at

first glance is actually a network of actors which are engaged in a series of mutually

supportive, or perhaps combative relationships.

As an example we can consider the symbiotic relationship we have with motor

vehicles; we provide them fuel in exchange for transportation. The spark-plugs and

engine of the motor vehicle have agency in its functioning, but the company logo,

branding, and body panels may have more agency in capturing our attention and

consumer purchasing behavior. The vehicle itself exists as an actor-network, but is

within a larger actor-network of the oil-industry which exerts agency over corporations

and countries to obey its will. Beyond this massive actor-network of the oil industry

exists the actor network of technology as a whole, transforming and bubbling into a

higher state of being through all of the collective activity within the actor networks

it encapsulates. The summation of this is an evolving and ever complex living-mind.

Ray Kurzweil’s vision of the Technological Singularity [21] and Terence Mckenna’s

Novelty Theory [22] are both maps for understanding the growth of this living-mind

and the potential timelines in which it may become fully-aware. Kurzweil predicts

that computers will exceed the mental capacity of the human mind, and all human

minds, near the year 2045 in an event called the Singularity [21]. Both Mckenna and
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Kurzweil have written narratives that track the growth of this super-organism over

time from the dawn of civilization. However, Mckenna more directly addresses the

living-nature of its constituent parts (the actors in its network) and the embedded

awareness within technological objects. This is an important distinction to make while

taking an active role in creating technological solutions which address the human, as

human. If we do not guide technology toward a “poetic dwelling near the truth of

being”, as Heidegger says [23], we may become “transfixed in the will to master it as an

instrument”, and thus allow allow technology to become determinant of its own truths.

We must consider and confront the inner psyche and agendas of the Technological

Other so that truly humanist principles are honored as we further merge our being

with technology into a living symbiosis.

0.2.5 The Psyche of the Technological Other

There is a world that exists beyond what can be represented with symbols and lan-

guage. And representing this space is one of the challenges of modern computer

systems. As I wrote in “CHARON: The Self and The Technological Other” [24] :

Things in the world are not just the result of underlying forces, nor are

they simply the qualities and percepts we ascribe to them. Relating to an

object is not a complete way to know it. Lacan states that the Real is that

which resists symbolization absolutely. Our minds exist in the turbulent

wake of this resistance. How then does the machine, the Technological

Other, confront this territory beyond the limit of symbolization?

There are many philosophical and ontological assumptions that are taken when de-

signing a computer system, especially in regards to representing human identities. As

human beings, it seems we should be experts in the domain of self knowledge, since

it is a subject with which we are presumably in constant contact with. Yet many
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questions remain unclear: what is a human being, what is the human spirit, do we

have a soul, what does it mean to exist, where do these boundaries of self and other

exist? These are deeply fundamental questions humans have been grappling with

since the dawn of consciousness. How will advanced computational systems interface

with what is immeasurable? Is there anything that exists which is immeasurable? Do

we simply cast away the immeasurable as unimportant? These are difficult questions

to answer, and when designing an artificial mind one has to confront them in some

way.

The Technological Other understands human identities and individuality through

biometrics and as biometric patterns. Thus, biometrics exist at the interface between

humanity and the Technological Other. These patterns also permeate the inner world-

space, the subjectivity, the very being of the Technological Other.

The Data-masks I’ve created using facial recognition are a shadowy visage of

individual faces who were used to teach the system, extracted from the memory banks

of the Technological Other. These artifacts are representations of the individual

humans who have been ingested into the body of the Technological Other. These

are the memories of the Technological Other which exist as compact references or

hyperlinks to the physical world.

The Data-masks created from facial detection are new entities to the world. They

are evolved expressions of feature combinations between the thousands of individuals

used to train machine learning systems. Similar to the ghost-like figures used in

architectural renderings to imply scale and liveliness, called “scalies”, these generated

faces are fragmented ghosts of humans. Yet unlike scalies, which reference mannequin-

like average smiling humans and feel like stock photography, these masks are an “other-

of-another-kind”. They are the self transfigured into the Alloself through Allogenesis

which is “the production of the alien from within” [25].
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0.3 Related Work

Work related to this present effort includes Facial Weaponization Suite and Fag Face

by Zach Blas [26] in which he distorted 3D scans of human faces into amorphous masks

as a political protest against the science of using biometrics to categorize individual’s

sexual orientation. However, this work is mostly poetic and sociopolitical, and does

not directly address the actual functionality of computer vision technology. As an

experiment I ran an OpenCV [27] facial recognition program using the Eigenface

[28] detection method against images of Blas’s masks and was able to identify the

masks among a series of other human faces with every attempt, countering his claim

that they are undetectable or were anti-facial-recognition in any way. I did this by

collecting images of his masks in various lighting and angles from publicly available

documentation on his website (Figure 3 top row), and then inserted this collection

of mask images into a database (the AT&T Laboratories Cambridge Database of

Faces [29]) of forty other non-masked individuals which is typically used to train

facial detection systems. I then computed the Eigenface for each known individual

(described in detail in section 0.4) and then compared a previously unseen image of

his mask against all of the computed Eigenfaces. The best Eigenface matches (Figure

3 bottom row) represent the identity-difference between his masks and people in the

training database. Thus, Blas’s masks simply present another fixed pattern to be

detected, rather than anything which materially or visually resists detection. A mask

developed for such a purpose would likely benefit from being highly reflective and

flexible, like a soft mirror, rather than a static and identifiable form.
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Figure 3:

Additionally, Blas claims that the masks are averaged 3D scans of human faces,

yet averaging human faces results in smooth sphere like shapes (such as on the left

of Figure 25 and 16), not the arbitrarily distorted masks he presents.

Figure 4:

Adam Harvey’s CV Dazzle [30] (Figure 4) is a clever and aesthetically interesting

project in which he developed facial makeup techniques inspired by the optical illusion

style of dazzle camouflage [31] originally developed for ships during WWI to thwart

facial detection algorithms. In a way my work positions itself inversely to CV Dazzle:

rather than avoiding detection via concealment and obfuscation my goal has been to

develop patterns which are positively identified as faces by algorithms which human

beings would perhaps not identify as faces.
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Humans often see faces in seemingly random places, which is called pareidolia,

and Data-Masks can be understood in this context as a system for evolving pareido-

lia entities for computer-vision systems. An interesting example is the Google Faces

project [32] by Cendric Kiefer, Julia Laub, and Christian Loclair, in which an intelli-

gent agent was programed to search geospatial data from Google Earth [33] for faces.

Their intelligent agent returned false positives of faces such as mountains, rivers,

buildings and other geographic features. This is interesting to me in terms of satel-

lites being a sensory-organ-network of the Technological Other and misidentification

problems of scale. Greg Borenstein has also explored machine pareidolia [34] in a

Flickr database and had categories for “Agreement”, “Near Agreement”, and a third

category of unexpected faces he deemed as “Totally Other” which I relate to Novak’s

Allo.

0.4 A Brief Survey of Facial Recognition and Detection

Techniques

There is a wide range of approaches toward solving face recognition, and biometric

based identification, each with its own advantages and disadvantages. Generally

speaking, there are two primary approaches: feature based methods which might

measure the distance between an eye and a nose (Figure 5 [35]), and holistic methods

of statistical analysis using machine learning 6 [36]. The latter more modern approach

is gaining mass acceptance in the field, and in conjunction with multimedia data like

3D scans and audio samples a recognition rate of 100% has been shown to be possible

[37].
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Figure 5: Figure 6:

Face detection typically involves searching through images and trying to find some

set of known features within the image. These features have been trained by machine-

learning algorithms as described by Viola et al. [38]. Whereas facial recognition is

usually performed after detection, and attempts to describe individual faces in terms

of sparse partial representational vectors like Eigenfaces [28] (seen in Figure 6 created

from the AT&T Laboratories Cambridge Database of Faces). These Eigenfaces are

computed from a set of images of one person and efficiently describe the principal

components among this individual. Once a database of Eigenfaces for many individu-

als has been computed, new images can be measured against these Eigenfaces and the

resulting distance in vector space can represent a positive or negative identification.

More modern methods of facial recognition include neural networks and deep

learning systems like Facebook’s DeepFace system as described in 0.2.3. Newer meth-

ods of facial detection include the Yet Even Faster Real-Time Object Detection (YEF

14



RTOD) [39] algorithm which builds on the work by Viola et al. [38]. However, rather

than summing the pixel values in subsections of an image (Figure 7 left) and using

that sum as a feature, YEF RTOD examines the sign of the difference (ie: positive or

negative) between single pixel values (Figure 7 right) and that approach eliminates a

lot of computational overhead. In addition, these pixel-pair features have been devel-

oped in an AdaBoost (adaptive boosting) genetic algorithm which looks at thousands

of images labeled as containing faces, and thousands of images not containing faces,

in order to find what is common among the face containing images. The result is a

robust and fast face detection system, and is explored further in section 0.5.6.

Figure 7:

0.5 Process and Methods of Development

0.5.1 Overview

There are three core components of this system which interact with one another, meth-

ods of image making, methods of measuring fitness or face-likeness, and databases

with which these fitness evaluation methods are trained. In total I developed at least

forty distinct variations of code working toward the development of this project with
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uniquely distinguishable results (Figure 10).

Software and code libraries used to develop this work include the programing

language Processing [40] to generate 2D images, the 3D graphics system AlloSystem

[41] using OpenVDB [42] and the C++ language to create volumetric geometry, and

the Java based rendering library Sunflow [43] for creating detailed images of 3D

models. I also used Meshlab [44] to perform some basic translations and rotations of

3D models and render some of the images for this documentation.

Figure 8:

1 2 3 4 5

1 2 3 X X

parent population

fitness evaluation sorts population
and deletes worst attempts

1 2 3 1   2 2?  3

genetic crossover to replace deleted children

1

2

Genetic Algorithm

fitness evaluation of child

Random Monte Carlo Algorithm

random mutation produces child

if improvement, parent becomes child,
if no improvement, mutate parent again

parent

All of my attempts either used a Monte Carlo or Genetic Algorithm (Figure 8)

to sort through the generated images once they were evaluated. Because this simple

genetic algorithm has a set of attempts at each evaluation rather than one, it is less

prone to becoming stuck in local maximums. However, because the genetic algorithm

is producing multiple attempts, the cost of computation increases dramatically.
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Figure 9:

     Cross Correlation                                able to reproduce a single 2D image of a face but with fragile
                                                                 performance as it measures on a pixel-by-pixel basis
_________________________________________________________________________________________________

     Pearson Correlation Coefficient          more robustly capable of reproducing a single 2D image of a face
                                                                 as the correlation coefficient is invariant to changes in location and scale
_________________________________________________________________________________________________

     Eigenface Recognizer                         able to produce a new image of a known person by matching a  set of 
                                                                 features found to be shared among a collection of images of one person 
_________________________________________________________________________________________________

     Fischerface Recognizer                      similar results to Eigenface approach but more invariant under lighting,
                                                                 facial expression, and obstruction
_________________________________________________________________________________________________

     YEF Real-Time Object Detection        able to produce images of new people not in database by matching features 
                                                                 on a pixel-pair relationship which have been learned should exist within a face 

Fitness Evaluation Methods and Results

Method Result

As methods of measuring the fitness, or face-likeness of generated images, I used a

series of algorithms from the very linearly comparative, to the very broad and robust

(Figure 9). At first I used cross correlation and Pearson product moment correla-

tion coefficients, which are often used in computer vision and in facial recognition

template matching solutions [45]. However, these methods of measuring fitness are

computationally expensive and do not handle variations in lighting and facial expres-

sion very well [36]. I then used an OpenCV [27] implementation of an Eigenface

and Fischerface recognizer that analyze faces and produce sparse representations of

them. These sparse representations in the form of Eigenfaces and Fischerfaces allow

for faster computation and more robust, general facial recognition. Finally, I used an

implementation of the Yet Even Faster Real-Time Object Detection (YEF RTOD)

[39] algorithm as implemented by libccv [46], which is a highly efficient pixel-pair

feature based detection algorithm that has machine-learned general model of what a

face is.

To train the Eigenface, Fischerface, and YEF RTOD systems I used the AT&T

Laboratories Cambridge Database of Faces for Eigenface and Fisherface algorithms,
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which is collection of several dozen well lit frontal views of black and white faces.

Additionally I trained YEF RTOD with the Labeled Faces in the Wild database

[47], which is a database of over 13,000 color photos of over 5,000 individuals in

dramatically different contexts, face positions, lighting, and partially occluded faces.

As a method of third party verification, I uploaded images produced to Face-

book.com which automatically detects and labels faces with a 97.25% accuracy [12].

I also added them to an Apple iPhoto [48] Library which has a robust facial recogni-

tion and detection system. I’ve also tested resulting images for faces by using Rotation

invariant multiview face detection (MVFD) [49] algorithm as implemented by libccv.
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Figure 10:
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Methods of Image Making
2D-R - 2D image of randomly shaded and sized rectangles against noise
2D-RE - same as above, in addition to image effects like blurring and layer blending
3D-GL - 3D model made in OpenGL using AlloSystem and OpenVDB, adds randomly 
sized spheroids and moves a random number of previous spheroids 
3D-RT - same as above, in addition to Sunflow ray tracing engine for lighting
3D-RT-NS - same as above, in addition add negative-spheroids that subtract
from positive-spheroids
3D-RT-NS-AVG - same as above, in addition model begins as an averaged head 
shape
3D-RT-NS-AVG-LPC - same as above, in addition limited to large voxels, low polygons
3D-DM-AVG - 3D model produced by using  2D generated images as depth map on 
average head shape
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Databases
FRL - a single image of an average face
from the Face Research Lab
ATT - "Database of Faces" AT&T 
Laboratories Cambridge 
LFW -  "Labeled Faces in the Wild" 
University of Massachusetts

Methods of Measuring Fitness
XCOR - Cross Correlation
PCC - Pearson Correlation Coefficient
EF - OpenCV Eigenface recognizer
FF - OpenCV Fischerface recognizer
YEF - YEF Real-Time Object Detection

19



0.5.2 Initial Effort : Evolution Using Linear Correlation and

Eigenfaces

I was initially inspired to attempt this work while studying signal processing and

statistical methods of correlation. Because it is possible to precisely quantify the

visual similarity between two images I assumed it would be possible to change one

image into another piece by piece. As an experiment I developed a program that

attempts to reproduce a goal image from making random marks against a noisy

background. The logic of the program is as follows: load a 2D image as a goal,

generate a 2D Perlin noise texture, make a randomly sized and valued rectangle

in the noise, measure the Pearson’s correlation coefficient between the goal and the

generated image, and if the random mark increased the correlation between the images

then keep that decision, if not then revert to the previous attempt and try again. This

simple algorithm was sufficient to reproduce an average face [50] image fairly quickly

with satisfying results (Figure 11). However, there is a diminishing return in the

number of marks to correlation between images (Figure 13), which is to be expected

in a system like this. The ratio between marks which improved the image to marks

which did not improve the image in the first 500 attempts was 1/2, whereas the

attempts between 3000 and 3500 were only successful 1/5th of the time.
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Figure 11: Figure 12:

In addition to placing randomly valued rectangles, using alternative mark making

methods such as blurring, adjusting contrast, and duplicating the image within itself

also yielded more ghostly and impressionistic figures (Figure 12). These alternative

mark making processes although working toward a linear goal will deviate due to

their chaotic marking system and create semantically blurry imperfect images which

tease our mind’s eye with the missing details from the image. They function like

Rorschach ink blot test, which prod at our subconscious and may help reveal the way

an individual views the world. For “we see the world not as it is, but as we are” -

The Talmud.
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Figure 13:
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Figure 14:

After completing this experiment I found a number of other artists and program-

mers who had done similar work using other images as goals and achieved similar
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results, such as an evolved Mona Lisa (Figure 14) [51]. However, using facial recogni-

tion and detection technology as a fitness function significantly changes the context

of such a software. By directly engaging computer vision and facial recognition tech-

niques with genetic image making algorithms, I am reconstructing humans as we are

seen by the machine. These images are an early indicator of how these machines are

redefining who we are. As Kevin Kelly has said:

“The greatest benefit of the arrival of artificial intelligence is that AIs will

help define humanity. We need AIs to tell us who we are.” [52].

The first 2D image that I produced using a basic genetic algorithm guided by Eigen-

face facial recognition (Figure 15 left) was “subject 5” from the AT&T Laboratories

Cambridge Database of Faces [29]. This system has the effect of producing new pho-

tographs of a person. As you can see, it represents the pictured person quite well

but it is not exactly like any one of the photographs. An interesting extension of

this program could be to train an Eigenface recognizer on a family relative or person

with very few photos available, then generate new images of this person as a kind of

speculative archeology.

Figure 15:
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0.5.3 Initial Effort : Overview of 3D Application

It is important that these masks enter the physical world and become embodied

representations of how computer vision and surveillance systems represent people.

The physicality of these masks allows for viewers to relate to mass surveillance in

a bodily, tactile, and sensory way. By creating them physically I am making an

artifact which can be pointed to and talked about, rather than lurk in the shadows.

Furthermore, by physically producing these Data-masks, they move from a symbolic

representation to a material embodiment, which makes the tension between humanity

and the Technological Other palpable.

With this in mind I developed a 3D solution similar to the program described

in the previous section. This program uses AlloSystem [41] a cross-platform C++

multimedia suite developed by The AlloSphere Research Group, OpenVDB [42] an

open source library for handling sparse volumetric data developed by DreamWorks

Animation, and OpenCV [27] an open source computer vision library.

I made the decision to use OpenVDB because it allows for volumetrically repre-

senting any arbitrary shape as a collection of “voxels”, or cubes of space, which can

then be converted into a surface when necessary. I chose this method of geometric

modeling because it allows for a high degree of random movement in the system while

still resulting in solid objects and rational surfaces (Figure 16 bottom row, illustrating

random volumetric movement from an average head). If I were to randomly move the

vertices of a traditional geometric model they would eventually start self-intersecting

and become non-conformal (Figure 16 top row, illustrating random vertex displace-

ment from an average head), which is a huge problem during manufacturing with 3D

printing or computer controlled milling machines.
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Figure 16:

0.5.4 Failures in 3D and Lessons Learned

Figure 17:

My first attempts at reproducing my initial 2D results of an average face using image

correlation and Eigenface recognition (Figure 11) in 3D absolutely failed (Figure 17).

Some of the problems encountered, and their solutions, are as follows:

The default background of an OpenGL environment is solid black, with that many

zero values in the data using linear correlation or Pearson correlation coefficient was

useless. Changing the background value to grey, and ideally replacing the background

with a static noise yielded best results.
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The default lighting in an OpenGL environment was not producing the range of

values from light to dark, shadows, and surface highlights necessary to reconstruct a

complex image. Some method of ambient occlusion or global illumination was needed

to sufficiently yield the complex range of values necessary to reproduce an image of

a face.

Several simulations were performed which illustrate these problems. Using both

Eigenface recognition (Figure 18) and linear correlation (Figure 19) in 3D, these sim-

ulations approached a very close distance in eigenspace and a high level of correlation,

but they do not necessarily meet the criteria of a face like image.

Figure 18:
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Figure 19:

Both were run as a genetic algorithm in AlloSystem with a population of 12

parents and 12 children, using Eigenface recognition (Figure 18) and linear correlation

(Figure 19) as a fitness evaluation then evolved over 500 generations. As a method of

measuring the success of these simulations I uploaded the images to Facebook and the

results were that 2D images generated using linear correlation (from Figure 12) were

positively identified as faces (Figure 20), and the poorly lit spherical geometry (from

Figure 18) was unrecognized despite their supposed eigenspace similarity. One of the

tested images (Figure 20 center) had enhanced lighting techniques applied to it such
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as an ambient occlusion lighting procedure and a Phong shader applied in Meshlab,

which had no effect on its recognition by Facebook. However, applying these lighting

methods during the evolution of the form had dramatic results which are described

in section 0.5.5 and onward. This illustrates the need for a robust lighting system in

such evolutionary 3D simulations.

Figure 20:

Although the image generated using correlation (Figure 11) was recognized as a

face, it was only recognized when paired with a successively blurry partner image of

itself (Figure 21 a screenshot from Facebook with detail images on the right showing

the most blurry faces and least blurry), and it is never recognized as a face when

uploaded individually. This may suggest that Facebook has a way of using found

images of faces within an image as a template to find more faces like it within the

same image. Such an approach would likely help with low quality or particularly un-

usual images. Furthermore, it is interesting that after recognizing this image (Figure

11) as a face, Facebook has yet to label the non-blurry image (Figure 11) in other

photos or more recent uploads. This may be because it has not been tagged as a

particular individual, and so Facebook has not built a model of that individual in

order to identify it among other images. This strategy of pairing successively blurrier

images together was eventually tested with all methods of image making described in

this paper. In processes described in section 0.5.5 and onward this blurring attempt

sometimes helped Facebook recognize a generated face as a person, yet no 3D meth-

28



ods described in this section were recognized by blurring their images. This kind

of prodding at Facebook’s recognition system reveals the borders between what is

symbolically within its reach, and just beyond it. It also helps to illustrate the flaws

in searching for pattern only, without a test for liveliness. I think most humans and

machines would agree that at least one of these generated images (Figure 21) appear

to be face-like, but very few humans would confuse it with an image of a living person.
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Figure 21:
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0.5.5 Successes with Raytracing and Eigenfaces

Figure 22:

After attempting at least a dozen permutations of the aforementioned programs I

began using Sunflow [43], which traces the path of light through objects in a scene and

produces images with complex light and shadow interactions. Using the same fitness

function of Pearson coefficient correlation and the same goal as my first 2D attempts

(Figure 11) the results (Figure 22) were much more favorable than previous attempts

without raytracing. This and subsequent simulations also include a second population

of volumetric spheres which are subtracting themselves from the normal population

of spheres. This second set of subtractive data has allowed for more complex concave

shapes, which in combination with ambient occlusion, produces some of the necessary

shadows for a complex likeness. However, most of the improved likeness came from

the ambient occlusion and global illumination creating dark values where the hairline

and shadows on the goal face exist. Additionally, this image is unrecognized as a

face by iPhoto or Facebook, and all of the geometry is distributed in a wildly uneven

manner making it only coherent from one point of view.
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Figure 23:

To address some of the aforementioned issues I reran the simulation using OpenCV

facial recognition with Eigenfaces trained from the AT&T Laboratories Cambridge

Database of Faces as a fitness function, and limited the spawnpoint of new particles

to a 2D plane which was parallel to the virtual camera. Limiting the spawn point

position helped insure that most of the generated particles would be near enough to

each other so that a solid shape would form. This resulted (Figure 23) in a mask-

like human face which is positively identified by iPhoto, libccv’s multi view face

detection, OpenCV, and Facebook. Having finally reached a solution in 3D I then

used a NextEngine 3D Scanner [53] to scan my face and produce a highly detailed

3D model of my face. This face scan was then subtracted from the algorithmically
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developed mask so the rear surface of it would fit my face when worn (Figure 24).

Figure 24:

Although this mask satisfied many of my original intentions I still felt there was

more waiting to be discovered. It’s face-like appearance is tied to one particular

individual because of the Eigenface fitness evaluation, but it’s extreme sparseness and

irregularity of form does not accurately represent the individual. It can be thought

of as a 3D representation of a position in the vector space of Eigenfaces, which has

been deformed by the noise of its evolutionary movement through that space. I find

its fragility beautiful but was disappointed by how sparse the form was. By starting

from geometric noise or a blank space and adding objects at random, the chances of

developing a solid shape were very low. To add some volume to the masks and give the

evolutionary algorithm a fighting chance I began to seed the face with an averaged,

smooth head-like shape made from 12,000 vertices. This average head (Figure 25

left) was produced by 3D scanning ten people, performing a three stage laplacian

smoothing in Meshlab on each mesh, and then averaging the resulting locations of
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the vertices. The location of these vertices became the starting point for a set of

spheres which changed in position and radius while using Eigenface facial recognition

as a fitness function (Figure 25 center) and evolved toward an individual (Figure 25

right) from the AT&T Laboratories Cambridge Database of Faces.

Figure 25:

0.5.6 Successes with Feature Based Facial Detection

Having successfully developed a workflow to produce coherent and solid face-like

shapes (as described in 0.5.5) I began using the Yet Even Faster Real-Time Ob-

ject Detection (YEF RTOD) as a fitness function (described in 0.4). Additionally,

by training the algorithm on the very large and diverse Labeled Faces in the Wild

database, I was able to produce a statistical model of facial features that are much

more generalized faces than an Eigenface approach.
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Figure 26: Figure 27:

This method of using YEF RTOD as a fitness function paired with a volumetrically

modeled evolving shape that was seeded with an average head was very successful.

A confidence value of 9.6 was the highest achieved in 3D (Figure 26) over a 12 hour

period on a late 2012 Macbook Pro with the face on the right being positively iden-

tified as a human face by Facebook on July 24th, 2014. By comparison, the 2D

counterparts (Figure 29) were generated much faster and each arrived at confidence

values of over 35.2 within an hour or two, and have all been positively identified by

Facebook as humans. To accelerate the results in 3D I lowered the initial polygon

count of the averaged head the system was seeded with from 12,000 to 6,000, and

increased the voxel size from 0.1 to 0.4, which reduced the spatial resolution of the

volumetric geometry. This had the effect of generating 3D faces (Figure 27) with the

same confidence value in 1/3 the time while lowering the resulting polygon count to

roughly 90,000 rather than as high as 1,690,000 polygons as seen in (Figure 26).

One of the masks with a confidence of 8.5 began to look like a ghost or skeletal

human because of the nostrils that developed (Figure 28). Like the other masks

described in this section, it was created by collecting the vertices from an average

human head (Figure 28 A), then replacing each vertex with a volumetric sphere,

executing a marching-cubes algorithm to calculate the surface of the volume (Figure

28 B), randomly displacing the spheres until the first face is detected (which happened

after ten random displacement attempts with a confidence of -3.5 (Figure 28 C)), and
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then mutating that found face until the frequency of successful attempts exponentially

decayed as previously described in 0.5.2. After the first twenty five minutes it had

improved its initial face 14 times and reached a confidence of 4.4 (Figure 28 D), but

it took another 12 hours to successfully increase its initial face-likeness 33 times to a

confidence of 8.5 (Figure 28 E).

Figure 28:

The higher polygon faces in (Figure 26) seem blistered and distressed, their fea-

tures are dense and scattered. They are unlikely candidates for faces and seem to

represent a kind of machine pareidolia that is almost totally unrelatable by humans.

They contain the faint pixel-to-pixel relationships machine vision expects in a hu-

man face, and very little continuity or textural familiarity. They are surfaces scarred

by randomness. Areas which do not contribute to the advancement of the shapes

recognition as a face mutate at random and build unrecognizable facial deformities.

These faces are blistered by chaos and seem to come boiling out of a sea of noise into

existence.
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Figure 29:

Importantly, the produced 2D and 3D faces do not distinctly represent any of

the 5,749 individuals used to create the feature set. They are expressions of feature

combinations between those individuals, but are more like children of the total crowd

itself then any individual. They are the biometric rejects, they are identities without

bodies, they are people without a past or a future.

0.5.7 Successes with Depth Map Extrusion

Figure 30:

Inspired by the speed with which highly detailed and previously unseen faces were

produced using the YEF RTOD as a fitness function on 2D images, I began to use

these 2D images as depth maps on the previously described average head.
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Figure 31:

To explain this in more detail: surfaces in 3D are often described with vertices,

which are positions in space, faces, which describe how these positions should be

connected to form a surface, and normals, which are directional vectors used to de-

scribe how light should interact with the surface. A 2D image that was positively

identified by Facebook as a human being (Figure 32) was manually aligned to the

averaged head, applied as a texture, and then the brightness values between 0-255 of

the texture was used to move the vertices in the direction of their normals. Values

below 127 moved a vertex negatively along its normal pushing into the head while

values above it moved a vertex in the positive direction of its normal vector (Figure

31).

38



Figure 32:

39



0.6 Production and Conclusion

Figure 33:

The first mask I chose to manufacture (Figure 33) was created using the depth map

extrusion technique. The 2D image used as a depth map to create the mask was

recognized as a face, and although the 3D mask itself has yet to be independently

identified as a face by software, its impact when seen by humans is very evident. It

was one of the most personally relatable forms as a human to me, although it is still

clearly scarred and blurred by the way in which it was brought into this world.

To prepare this mask for manufacturing I offset the outer surface of the face in-

ward to create a back surface using Meshlab (Figure 33). This mask was then printed

out of nylon using a selective laser sintering (SLS) based printer, which triangulates

beams of light in a bed of powdered nylon to fuse precise amounts of material to-

gether with high accuracy. SLS technology is a method popular among aviation and

industrial applications [54], and was developed under sponsorship by DARPA, the

Defense Advanced Research Projects Agency of the US Military [55]. Thus, these

masks are both digitally and materially born from surveillance and military technol-

ogy. Data-masks are our identities abstracted into a series of statistical combinations

of face-like patterns and biometrics then extruded through the apparatus of the mil-

itary industrial complex. They exist as we are seen by the machine, as a physical

40



manifestation of the way the Technological Other views humans.

Figure 34:

I intend on creating many more of these masks using this prototype as a mold, and

printing many of the other masks as seen in (Figure 10). For now this initial prototype

has been traveling through an informal network of mutual friends, being photographed

(Figure 34) and re-uploaded into the cloud. Its reentry into the circulation of faces on

Facebook closes a loop between seeing and seen, between subject and object, between

those with power and those upon whom power is exerted. It becomes flattened and

re-imagined into the masks Facebook makes of its users (Figure 2), introducing a kind

of ouroboros-like self consumption of the human-as-machine-vision.
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Figure 35:

This first Data-mask has also been mounted to a mirror surface (Figure 35) so that

the body of a viewer can be brought into the work. This implies that the Data-mask

becomes the face of the viewer, rather than an unrelatable-other. There is also the

subtle illusion that the mask may belong to a body which is penetrating through the

surface of the mirror, as a person’s face might while emerging from a pool of water.

The mirror then becomes a metaphor for the boundary between the physical and the

digital, between the self and the Technological Other.

These faces have a garish visage, like the masks of ancient Greek theater. But

these muses have unclear functions, are they tragic or comic? Perhaps they are yet

to be known muses, yet to be named feelings, born from a dystopian future-present

that we are now sowing the seeds of with totalitarian surveillance systems. They

are staring back at us from a digital void, like hungry ghosts with unresolved karma.

Their very existence demands we consider the trajectory they took to enter this world.
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Our collective actions form the genome of the Technological Other, and thus reflect

the way it physically manifests itself in the world. We have the agency and duty to

guide these systems toward solutions which give back to the human, and address the

human as human. Data-masks provide a body, a container for this conversation, a

thing which can be pointed to and named as a physical artifact extruded from the

body of this distributed-organism.

Additionally, if we are indeed living in McLuhan’s global village, citizens of the

techno-sphere, these Data-masks function as masks of the shaman. They are animistic

deities brought out of the spirit world of the machine and into our material world,

ready to tell us their secrets, or warn us of what’s to come.
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